2015年4月14日火曜日

フーリエ展開とフーリエ係数

周期$2\pi$の関数$f(x)$に対して、以下の式を、$f(x)$のフーリエ級数という。
\begin{eqnarray}
f(x) \sim \frac{1}{2} a_0 + \sum_{n=1}^{\infty} ( a_n \cos nx + n_n \sin nx) .
\end{eqnarray}

この$f(x)$が適当な条件をみたすとき、右辺の級数は収束し、左辺に一致する。
\begin{eqnarray}
f(x) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} ( a_n \cos nx + n_n \sin nx) .
\end{eqnarray}
これをフーリエ(級数)展開という。

フーリエ展開・級数はどのような範囲の周期関数にも、
周期関数でなくても拡張可能であるが、いまはそっとしておく。


この式にはふたつの係数$a_n$と$b_n$が出てくる。
これを$f(x)$のフーリエ係数と言い、
\begin{eqnarray}
a_n &=& \frac{1}{\pi} \int_{0}^{2\pi} dx \cos nx f(x) \\
b_n &=& \frac{1}{\pi} \int_{0}^{2\pi} dx \sin nx f(x)
\end{eqnarray}
が定義である。

フーリエ係数は、
1) $f(x)$がフーリエ展開可能であること、
2) フーリエ級数の項別積分可能性
のふたつを仮定すると、フーリエ展開の式から以下のように導くことができる。

$f(x)$のフーリエ展開は、
\begin{eqnarray}
f(x) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} ( a_n \cos nx + n_n \sin nx) .
\end{eqnarray}
両辺に$\cos mx$を掛け、$x$で積分する。
\begin{eqnarray}
(\mbox{左辺}) &=& \int_{0}^{2\pi} dx \cos mx f(x)\\
(\mbox{右辺}) &=& \frac{1}{2} a_0 \int_{0}^{2\pi} dx \cos mx \cdot 1\nonumber \\
&& + \sum_{n=1}^{\infty} \left[ a_n \int_{0}^{2\pi} \cos mx \cos nx + b_n \int_{0}^{2\pi} \cos mx \sin nx \right] \nonumber \\
&=& \pi a_m
\end{eqnarray}
よって、
\begin{eqnarray}
a_n &=& \frac{1}{\pi} \int_{0}^{2\pi} dx \cos nx f(x) .
\end{eqnarray}

$b_m$も、$\sin mx$を掛けて積分すれば、導ける。

0 件のコメント:

コメントを投稿